3.89 \(\int \frac{\text{sech}^4(c+d x)}{(a+b \text{sech}^2(c+d x))^2} \, dx\)

Optimal. Leaf size=83 \[ \frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{2 b^{3/2} d (a+b)^{3/2}}-\frac{a \tanh (c+d x)}{2 b d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )} \]

[Out]

((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + b)^(3/2)*d) - (a*Tanh[c + d*x])/(2*b*
(a + b)*d*(a + b - b*Tanh[c + d*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.0904603, antiderivative size = 83, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4146, 385, 208} \[ \frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{2 b^{3/2} d (a+b)^{3/2}}-\frac{a \tanh (c+d x)}{2 b d (a+b) \left (a-b \tanh ^2(c+d x)+b\right )} \]

Antiderivative was successfully verified.

[In]

Int[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(2*b^(3/2)*(a + b)^(3/2)*d) - (a*Tanh[c + d*x])/(2*b*
(a + b)*d*(a + b - b*Tanh[c + d*x]^2))

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
 1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\text{sech}^4(c+d x)}{\left (a+b \text{sech}^2(c+d x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1-x^2}{\left (a+b-b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}+\frac{(a+2 b) \operatorname{Subst}\left (\int \frac{1}{a+b-b x^2} \, dx,x,\tanh (c+d x)\right )}{2 b (a+b) d}\\ &=\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{2 b^{3/2} (a+b)^{3/2} d}-\frac{a \tanh (c+d x)}{2 b (a+b) d \left (a+b-b \tanh ^2(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.207256, size = 88, normalized size = 1.06 \[ 4 \left (\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a+b}}\right )}{8 b^{3/2} d (a+b)^{3/2}}-\frac{a \sinh (2 (c+d x))}{8 b d (a+b) (a \cosh (2 (c+d x))+a+2 b)}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Sech[c + d*x]^4/(a + b*Sech[c + d*x]^2)^2,x]

[Out]

4*(((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a + b]])/(8*b^(3/2)*(a + b)^(3/2)*d) - (a*Sinh[2*(c + d*x)]
)/(8*b*(a + b)*d*(a + 2*b + a*Cosh[2*(c + d*x)])))

________________________________________________________________________________________

Maple [B]  time = 0.058, size = 380, normalized size = 4.6 \begin{align*} -{\frac{a}{bd \left ( a+b \right ) } \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{3} \left ( \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}a+b \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) ^{-1}}-{\frac{a}{bd \left ( a+b \right ) }\tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \left ( \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}a+b \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{4}+2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a-2\, \left ( \tanh \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}b+a+b \right ) ^{-1}}+{\frac{a}{4\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}{b}^{-{\frac{3}{2}}}}-{\frac{a}{4\,d}\ln \left ( -\sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}-\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}{b}^{-{\frac{3}{2}}}}+{\frac{1}{2\,d}\ln \left ( \sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}+\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{b}}}}-{\frac{1}{2\,d}\ln \left ( -\sqrt{a+b} \left ( \tanh \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}+2\,\tanh \left ( 1/2\,dx+c/2 \right ) \sqrt{b}-\sqrt{a+b} \right ) \left ( a+b \right ) ^{-{\frac{3}{2}}}{\frac{1}{\sqrt{b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x)

[Out]

-1/d/(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d*x+1/2*c)^2*a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)
*a/b/(a+b)*tanh(1/2*d*x+1/2*c)^3-1/d/(tanh(1/2*d*x+1/2*c)^4*a+b*tanh(1/2*d*x+1/2*c)^4+2*tanh(1/2*d*x+1/2*c)^2*
a-2*tanh(1/2*d*x+1/2*c)^2*b+a+b)*a/b/(a+b)*tanh(1/2*d*x+1/2*c)+1/4/d/(a+b)^(3/2)/b^(3/2)*a*ln((a+b)^(1/2)*tanh
(1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))-1/4/d/(a+b)^(3/2)/b^(3/2)*a*ln(-(a+b)^(1/2)*tanh(
1/2*d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)-(a+b)^(1/2))+1/2/d/(a+b)^(3/2)/b^(1/2)*ln((a+b)^(1/2)*tanh(1/2*
d*x+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)+(a+b)^(1/2))-1/2/d/(a+b)^(3/2)/b^(1/2)*ln(-(a+b)^(1/2)*tanh(1/2*d*x
+1/2*c)^2+2*tanh(1/2*d*x+1/2*c)*b^(1/2)-(a+b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.32172, size = 3765, normalized size = 45.36 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/4*(4*a^2*b + 4*a*b^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 8*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x +
 c)*sinh(d*x + c) + 4*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 + ((a^2 + 2*a*b)*cosh(d*x + c)^4 + 4*(a^2 + 2*
a*b)*cosh(d*x + c)*sinh(d*x + c)^3 + (a^2 + 2*a*b)*sinh(d*x + c)^4 + 2*(a^2 + 4*a*b + 4*b^2)*cosh(d*x + c)^2 +
 2*(3*(a^2 + 2*a*b)*cosh(d*x + c)^2 + a^2 + 4*a*b + 4*b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + 4*((a^2 + 2*a*b)*co
sh(d*x + c)^3 + (a^2 + 4*a*b + 4*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(a*b + b^2)*log((a^2*cosh(d*x + c)^4 +
 4*a^2*cosh(d*x + c)*sinh(d*x + c)^3 + a^2*sinh(d*x + c)^4 + 2*(a^2 + 2*a*b)*cosh(d*x + c)^2 + 2*(3*a^2*cosh(d
*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + c)^2 + a^2 + 8*a*b + 8*b^2 + 4*(a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d
*x + c))*sinh(d*x + c) - 4*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x + c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)
*sqrt(a*b + b^2))/(a*cosh(d*x + c)^4 + 4*a*cosh(d*x + c)*sinh(d*x + c)^3 + a*sinh(d*x + c)^4 + 2*(a + 2*b)*cos
h(d*x + c)^2 + 2*(3*a*cosh(d*x + c)^2 + a + 2*b)*sinh(d*x + c)^2 + 4*(a*cosh(d*x + c)^3 + (a + 2*b)*cosh(d*x +
 c))*sinh(d*x + c) + a)))/((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^4 + 4*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d
*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*sinh(d*x + c)^4 + 2*(a^3*b^2 + 4*a^2*b^3 + 5*
a*b^4 + 2*b^5)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + (a^3*b^2 + 4*a^2*b^3
 + 5*a*b^4 + 2*b^5)*d)*sinh(d*x + c)^2 + (a^3*b^2 + 2*a^2*b^3 + a*b^4)*d + 4*((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*
cosh(d*x + c)^3 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d*cosh(d*x + c))*sinh(d*x + c)), 1/2*(2*a^2*b + 2*a*
b^2 + 2*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)^2 + 4*(a^2*b + 3*a*b^2 + 2*b^3)*cosh(d*x + c)*sinh(d*x + c) +
2*(a^2*b + 3*a*b^2 + 2*b^3)*sinh(d*x + c)^2 + ((a^2 + 2*a*b)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b)*cosh(d*x + c)*s
inh(d*x + c)^3 + (a^2 + 2*a*b)*sinh(d*x + c)^4 + 2*(a^2 + 4*a*b + 4*b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b)*
cosh(d*x + c)^2 + a^2 + 4*a*b + 4*b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + 4*((a^2 + 2*a*b)*cosh(d*x + c)^3 + (a^2
 + 4*a*b + 4*b^2)*cosh(d*x + c))*sinh(d*x + c))*sqrt(-a*b - b^2)*arctan(1/2*(a*cosh(d*x + c)^2 + 2*a*cosh(d*x
+ c)*sinh(d*x + c) + a*sinh(d*x + c)^2 + a + 2*b)*sqrt(-a*b - b^2)/(a*b + b^2)))/((a^3*b^2 + 2*a^2*b^3 + a*b^4
)*d*cosh(d*x + c)^4 + 4*(a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^3 + (a^3*b^2 + 2*a^2*b^3 +
 a*b^4)*d*sinh(d*x + c)^4 + 2*(a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d*cosh(d*x + c)^2 + 2*(3*(a^3*b^2 + 2*a^
2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^5)*d)*sinh(d*x + c)^2 + (a^3*b^2 + 2*a
^2*b^3 + a*b^4)*d + 4*((a^3*b^2 + 2*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^3 + (a^3*b^2 + 4*a^2*b^3 + 5*a*b^4 + 2*b^
5)*d*cosh(d*x + c))*sinh(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}^{4}{\left (c + d x \right )}}{\left (a + b \operatorname{sech}^{2}{\left (c + d x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)**4/(a+b*sech(d*x+c)**2)**2,x)

[Out]

Integral(sech(c + d*x)**4/(a + b*sech(c + d*x)**2)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.17375, size = 189, normalized size = 2.28 \begin{align*} \frac{{\left (a + 2 \, b\right )} \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + a + 2 \, b}{2 \, \sqrt{-a b - b^{2}}}\right )}{2 \,{\left (a b d + b^{2} d\right )} \sqrt{-a b - b^{2}}} + \frac{a e^{\left (2 \, d x + 2 \, c\right )} + 2 \, b e^{\left (2 \, d x + 2 \, c\right )} + a}{{\left (a b d + b^{2} d\right )}{\left (a e^{\left (4 \, d x + 4 \, c\right )} + 2 \, a e^{\left (2 \, d x + 2 \, c\right )} + 4 \, b e^{\left (2 \, d x + 2 \, c\right )} + a\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)^4/(a+b*sech(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/2*(a + 2*b)*arctan(1/2*(a*e^(2*d*x + 2*c) + a + 2*b)/sqrt(-a*b - b^2))/((a*b*d + b^2*d)*sqrt(-a*b - b^2)) +
(a*e^(2*d*x + 2*c) + 2*b*e^(2*d*x + 2*c) + a)/((a*b*d + b^2*d)*(a*e^(4*d*x + 4*c) + 2*a*e^(2*d*x + 2*c) + 4*b*
e^(2*d*x + 2*c) + a))